A Little Microlocal Morse Theory

نویسنده

  • David B. Massey
چکیده

If a complex analytic function, f , has a stratified isolated critical point, then it is known that the cohomology of the Milnor fibre of f has a direct sum decomposition in terms of the normal Morse data to the strata. We use microlocal Morse theory to obtain the same result under the weakened hypothesis that the vanishing cycles along f have isolated support. We also investigate an index-theoretic proof of this fact.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microlocal Studies of Shapes

A gentle introduction to stratified Morse theory and Kashiwara’s conormal cycle.

متن کامل

ar X iv : m at h / 05 09 44 0 v 1 [ m at h . A G ] 1 9 Se p 20 05 MICROLOCAL PERVERSE SHEAVES

Microlocal perverse sheaves form a stack on the cotangent bundle T ∗X of a complex manifold that is the analogue of the stack of perverse sheaves on the manifold X itself. We give an embedding of the stack of microlocal perverse sheaves into a simpler stack on T ∗X which we call melded Morse systems. The category of melded Morse systems is elementary, in the sense that an object is a collection...

متن کامل

A New Modification of Morse Potential Energy Function

Interaction of meso — tetrakis (p-sulphonato phenyl) porphyrin (hereafter abbreviated to TSPP)with Na+ has been examined using HF level of theory with 6-31G* basis set. Counterpoise (CP)correction has been used to show the extent of the basis set superposition error (BSSE) on thepotential energy curves. The numbers of Na+ have a significant effect on the calculated potentialenergy curve (includ...

متن کامل

SINGULAR LAGRANGIAN MANIFOLDS and SEMI-CLASSICAL ANALYSIS

Lagrangian submanifolds of symplectic manifolds are very central objects in classical mechanics and microlocal analysis. These manifolds are frequently singular (integrable systems, bifurcations, reduction). There has been a lot of works on singular Lagrangian manifolds initiated by Arnold, Givental and others. The goal of our paper is to extend the classical and semi-classical normal forms of ...

متن کامل

Microlocal Analysis of GTD-based SAR models

We show how to apply the techniques of microlocal analysis to the Potter-Moses attributed scattering center model, which is based on the Geometrical Theory of Diffraction (GTD). The microlocal methods enable us to determine how scattering centers will appear in the radar data. We show also how to extend the model to some multiple-scattering events, and we apply the microlocal techniques to the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000